Course Code: 20EC0417 **R20**

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

Subject with Code: DIGITAL SIGNAL PROCESSING

Course & Branch: B.Tech – ECE

(20EC0417)

Regulation: R20

Year & Sem: III-B.Tech. & I-Sem.

UNIT –I DISCRETE FOURIER TRANSFORM (DFT) & FAST FOURIER TRANSFORM (FFT)

1	a) What is DFT? Give its significance with necessary equations.	[L1][CO1]	[2M]
	b) What is the purpose of IDFT, write its mathematical equation.	[L2][CO1]	[2M]
	c) Explain the relationship between DFT with other transforms.	[L2][CO1]	[4M]
	d) Compute the 4-point DFT for the sequence	[L3][CO1]	[4M]
	$x(n) = \begin{cases} 1; 0 \le n \le 2\\ 0; otherwise \end{cases}$		****
2	a) Determine the 8 point DFT of the sequence $x(n) = \{1,1,1,1,1,1,1,0\}$.	[L3][CO1]	[8M]
	b) Find the IDFT of the sequence $X(K) = \{1,0,1,0\}$.	[L3][CO1]	[4M]
3	a) List the properties of DFT.	[L1][CO1]	[2M]
	b)State and Prove any Four properties of DFT.	[L3][CO1]	[10M]
4	a) Write the significance of DFT in linear filtering.	[L2][CO1]	[4M]
-	b) Find the linear convolution of the sequences $x(n)$ and $h(n)$ using DFT.	[L2][CO1]	[8M]
	$x(n) = \{1,0,2\}, h(n) = \{1,1\}$	[L3][CO1]	[OIVI]
5	a) What is the purpose of filtering of long duration sequences? List the methods for	[L1][CO1]	[4M]
	filtering of long duration sequences.	[[]
	b) Evaluate the output $y(n)$ of a filter whose impulse response is $h(n) = \{1,1,1\}$ and	[L5][CO1]	[8M]
	input signal $x(n) = \{3, -1, 0, 1, 3, 2, 0, 1, 2, 1\}$ using overlap save method.		emac ==
6	Evaluate the output $y(n)$ of a filter whose impulse response is $h(n) = \{1,2\}$ and	[L5][CO1]	[12M]
	input signal $x(n) = \{1, 2, -1, 2, 3, -2, -3, -1, 1, 1, 2, -1\}$ using overlap save method		
<u> </u>	and overlap add method.	FT 015 GO 41	
7	a) How FFT improves the speed of computation? Find the number of multiplication and additions required in an 8-point radix-2 FFT.	[L3][CO1]	[4M]
	b) Explain the steps in Decimation in Time FFT algorithm with necessary diagram.	[L2][CO1]	[4M]
	c) Explain the steps in Decimation in Frequency FFT algorithm with necessary	[L2][CO1]	[4M]
	diagram.		
8	Compute 8-point DFT of the sequence $x(n) = \{1,2,3,4,4,3,2,1\}$ using Radix-2 DIT-FFT Algorithm.	[L3][CO1]	[12M]
9	Compute DFT of the sequence $x(n) = \{1,1,1,1,1,1,1,0\}$ using Radix-2 DIT FFT	[L3][CO1]	[12M]
	algorithm.		
10	Compute 8-point DFT of the sequence $x(n) = \{0,1,2,3,4,5,6,7\}$ using Radix-2	[L3][CO1]	[12M]
	DIF-FFT Algorithm.		

Course Code: 20EC0417

UNIT –II INFINITE IMPULSE RESPONSE FILTERS & REALIZATION OF IIR FILTER

1	a) What are the basic types of filters and on what basis are they classified?	[L1][CO2]	[2M]
	b) List the filter types in designing the IIR filters?	[L1][CO2]	[2M]
	c) Explain the steps in the design of an analog Butterworth low pass filter.	[L2][CO2]	[8M]
2	a) Compare the Analog and Digital filters.	[L2][CO2]	[2M]
	b) Design an analog Butterworth filter that has 2 dB pass band attenuation at a	[L3][CO2]	[10M]
	frequency of 20 rad/sec and at least 10 dB stop band attenuation at 30 rad/sec.	II All GOAL	100
3	a) Explain the steps in the design of an analog Chebyshev low pass filter.	[L2][CO2]	[6M]
	b) Design an analog filter using Chebyshev approximation for the specifications $\alpha_p = 3dB$ and $\alpha_s = 16dB$; $f_p = 1KHz$ and $f_s = 2KHz$.	[L3][CO2]	[6M]
4	a) Compare Butterworth and Chebyshev Filter.	[L2][CO2]	[2M]
	b) How a digital filter is designed? List the methods for converting analog filter TF	[L1][CO2]	[2M]
	to digital filter TF.	[L1][CO2]	[21/1]
	c) Illustrate the conversion steps in Impulse Invariance & Bilinear transformation	[L3][CO2]	[8M]
1	method?		100-100
5	a) For the analog transfer function $H(S) = \frac{2}{(S+1)(S+3)}$, Determine $H(Z)$ using	[L3][CO2]	[6M]
	Impulse Invariance method. Assume T=1 Sec.		
	b) Apply Bilinear transformation to $H(S) = \frac{4}{(S+3)(S+4)}$ with T = 0.5 Sec and	[L3][CO2]	[6M]
	find $H(Z)$.	1170	
6	Design a digital Butterworth IIR filter satisfying the following constraints. Let	[L3][CO2]	[12M]
9550	T=1s, apply Impulse Invariant Transformation.		
	$0.8 \le H(w) \le 1$; $0 \le w \le 0.2\pi$		
	$ H(w) \le 0.2 \; ; 0.32\pi \le w \le \pi$		
7	Design a digital Chebyshev IIR filter satisfying the following constraints. Let T=1s,	[L3][CO2]	[12M]
	apply Bilinear transformation. $0.707 \le H(w) \le 1$; $0 \le w \le 0.2\pi$		
	$ H(w) \le 1$, $0 \le w \le 0.21$		
8	a) Explain the frequency transformation technique in analog domain for converting	[L2][CO3]	[6M]
	low pass to low pass filter and low pass to high pass filter with frequency response.		
	b) Transform the prototype low pass filter with following system function into a	[L2][CO3]	[6M]
	high pass filter with a cutoff frequency Ω_c^*		
	$H(s) = \frac{\Omega_c}{s + 2\Omega_c}$		
9	a) What are the basic elements used to construct the block diagram of a discrete	[L1][CO2]	[4M]
_	time system? Draw their symbols.	[E1][CO2]	[4141]
	b) List the different types of structures for realization of IIR systems.	[L1][CO2]	[2M]
	c)Construct the Direct form I and Direct form II, of the LTI System described	[L3][CO2]	[6M]
	by the equation		
	$y(n) = -\frac{3}{8}y(n-1) + \frac{3}{32}y(n-2) + \frac{1}{64}y(n-3) + x(n) + 3x(n-1)$		
10	a)Construct the cascade form structure of the system with difference equation	[L3][CO2]	[6M]
	$y(n) = \frac{3}{4}y(n-1) - \frac{1}{8}y(n-2) + x(n) + \frac{1}{3}x(n-1)$		
	b) Construct the parallel form structure of the system with difference equation	[L3][CO2]	[6M]
	y(n) = -0.1y(n-1) + 0.72y(n-2) + 0.7x(n) - 0.252x(n-2)		

UNIT –III FINITE IMPULSE RESPONSE FILTERS & REALIZATION OF FIR FILTER

1	a) What is FIR filter? Write the necessary and sufficient condition for the linear phase characteristic of a FIR filter?	[L1][CO3]	[2M]
	b) Explain the steps to be followed in designing FIR Filters using Fourier Series method.	[L2][CO3]	[4M]
	c) Design an FIR digital filter to approximate an ideal Low pass filter with pass band gain of unity, cutoff frequency of $1kHz$, and working at a sampling frequency $f_s = 4kHz$. The length of the impulse response should be 11. Use Fourier series method.	[L3][CO3]	[6M]
2	a) What is a window? Why it is necessary?	[L4][CO2]	[2M]
	b) Explain the Procedure for designing FIR filters using windows.	[L2][CO2]	[4M]
	c) Give the equations for Rectangular, Hanning and Hamming window and explain its significance.	[L2][CO2]	[6M]
3	a) A Low pass filter is to be designed with the following desired frequency response using rectangular window for N=11.	[L3][CO3]	[6M]
	$H_d(e^{jw}) = 1 \text{ for } -\frac{\pi}{2} \le w \le \frac{\pi}{2}$		
	$=0 \qquad \frac{\pi}{2} \le w \le \pi$		
	Determine the filter coefficients h(n) if the window function is defined as		
	$w(n) = 1 \text{ for } -5 \le n \le 5$		
	= 0 otherwise		
	Also determine the frequency response H(z) of the designed filter. b)Design an ideal High pass filter with the frequency response	[L3][CO3]	[6M]
			[UNI]
	$H_d(e^{jw}) = 1 for \frac{\pi}{4} \le \omega \le \pi$		
	$=0 \omega \le \frac{\pi}{4}$		
4	Find the values of h(n) for N=11 and find H(z).	[I 2][CO2]	[12]
4	Design a filter with following data, using a Hamming window with N=7.	[L3][CO3]	[12M]
	$H_d(e^{jw}) = 1 \text{ for } -\frac{\pi}{4} \le w \le \frac{\pi}{4}$		
	$=0 \qquad \frac{\frac{4}{\pi}}{\frac{4}{4}} \le w \le \pi$		
5	Design an ideal High pass filter using Hanning window with the frequency response	[L3][CO3]	[12M]
	$H_d(e^{jw}) = 1$ for $\frac{\pi}{4} \le \omega \le \pi$		
	$=0 \omega \leq \frac{\pi}{4}$		
	Find the values of h (n) for N=11 and find H(z).	FT (1)FG(0.0)	FAN F7
6	a) Compare Rectangular window and Hamming Window.	[L4][CO2]	[3M]
	b) Compare Rectangular window and Hanning Window.	[L4][CO2]	[3M]
	c) Write the design steps of FIR filter using Frequency sampling technique.	[L2][CO2]	[6M]
7	Compute the coefficients of a linear phase FIR filter of length N=15 which has a	[L3][CO3]	[12M]
	symmetric unit sample response and a frequency response that satisfies the		
	conditions. $H\left(\frac{2\pi k}{15}\right) = 1 \text{ for } k = 0,1,2,3$		
	= 0 for k = 4,5,6,7		
8	a) List the types of structures for realizing the FIR systems.	[L1][CO3]	[2M]
	b) Draw the Linear Phase Structure and transversal structures for realizing the FIR filters and explain.	[L2][CO3]	[10M]
9	a) Construct the Direct form realization of system function. $H(Z) = 1 + 2Z^{-1} - 3Z^{-2} - 4Z^{-3} + 5Z^{-4}$	[L3][CO3]	[6M]
	23500 Co. 20 1000 1000 1000 1000 1000 100 100 100	[[3][CO3]	[6M]
	b) Construct the cascade realization of the system function.	[L3][CO3]	[6M]
	$H(Z) = 1 + \frac{5}{2}Z^{-1} + 2Z^{-2} + 2Z^{-3}$		

R20

10	a) Realize the H(Z) with minimum number of multipliers	[L3][CO3]	[6M]
	$H(Z) = 1 + \frac{1}{2}Z^{-1} + \frac{1}{8}Z^{-2} + \frac{3}{4}Z^{-3} + \frac{1}{8}Z^{-4} + \frac{1}{2}Z^{-5} + Z^{-6}$		
	b) Realize the second order FIR system $y(n) = 2x(n) + 4x(n-1) - 3x(n-2)$ by using transposed form structure.	[L3][CO3]	[6M]

UNIT –IV FINITE WORD LENGTH EFFECTS

1	a) Discuss briefly about different types of number representation with examples.	[L2][CO4]	[6M]
1			
_	b) Compare fixed point and floating point arithmetic.	[L4][CO4]	[6M]
2	a) Explain quantization noise and its methods with suitable example.	[L2][CO4]	[6M]
_	b) Discuss in detail the errors resulting from rounding and truncation.	[L2][CO5]	[6M]
3	a) Draw and explain the power density functions for truncation and rounding.	[L1][CO5]	[6M]
	b) Discuss the various common methods of quantization.	[L2][CO4]	[6M]
4	a) Explain input Quantization Error and its effects with suitable example.	[L2][CO4]	[6M]
	b) What is coefficient quantization error? Explain its effects with suitable	[L2][CO4]	[6M]
	examples.		
5	The output signal of an A/D converter is passed through a first order low pass	[L3][CO5]	[12M]
	filter with transfer function $H(Z) = \frac{(1-a)z}{(Z-a)}$ for $0 < a < 1$. Find the steady state		
	output noise power due to quantization at the output of the digital filter.		
6	Find the steady state variance of the noise in the output due to quantization of	[L3][CO5]	[12M]
	input for the first order filter. $y(n) = a y(n-1) + x(n)$.	[[]
7		[L3][CO5]	[12M]
'	Consider the transfer function $H(z) = H_1(Z) \cdot H_2(Z)$ where $H_1(Z) = \frac{1}{(1-a_1Z^{-1})}$		[121/1]
	and $H_2(Z) = \frac{1}{(1-a_2Z^{-1})}$. Find the output round off noise power. Assume $a_1 = 0.5$		
	and $a_2 = 0.6$.		
8	a) What is meant by zero limit cycle oscillation? Explain with example.	[L2][CO4]	[6M]
	b) Explain the characteristics of limit cycle oscillation with respect to the system	[L3[CO5]	[6M]
	described by the difference equation $y(n) = \alpha y(n-1) + x(n)$. Assume $\alpha = \frac{1}{2}$	[[]	[]
	<u> </u>		
	data register length is 3 bits, the system is excited by an input $(0.975 \text{ for } n = 0)$		
	$x(n) = \begin{cases} 0.875 & \text{for } n = 0 \\ 0 & \text{for otherwise} \end{cases}$. Also, determine the dead band of the filter.		
9	a) What is meant by Overflow limit cycle oscillations? Explain with example.	[L2][CO4]	[6M]
	b) Find the characteristics of a limit cycle oscillation with respect to the system	[L3][CO4]	[6M]
	described by the difference equation $(n) = 0.97 y(n-1) + x(n)$, Determine	[20][00.]	[01,1]
	the dead band of the filter.		
10	a) Explain Signal scaling for second order IIR filter with necessary mathematical	[L2][CO4]	[6M]
1000	expressions.		
	b) Given H(z)= $\frac{0.5+0.4 Z^{-1}}{1-0.312 Z^{-1}}$ is the transfer function of a digital filter, find the	[L1][CO4]	[6M]
	scaling factor S_0 to avoid overflow in adder 1 of the digital filter shown in fig.		
	S_0 0.3		
	+		
	x(n) $y(n)$		
	Z^{-1}		
	0.312 0.4		
	0.512		

Course Code: 20EC0417

UNIT -V INTRODUCTION TO DIGITAL SIGNAL PROCESSORS

1	a) Explain the two categories of DSP's in detail.	[L2][CO6]	[6M]
8	b) What are the advantages of the DSP processors over conventional microprocessors?	[L1][CO6]	[6M]
2	 a) Explain the Multiplier and Multiplier Accumulator (MAC), Modified bus structures in brief with relevant diagram. 	[L2][CO6]	[8M]
	b) What is VLIW architecture? Draw and explain in brief with diagram.	[L2][CO6]	[4M]
3	a) Explain the concept of multi access memory and multi ported memory.	[L2][CO6]	[4M]
	b) Illustrate on the various phases of Pipelining concept.	[L3][CO6]	[8M]
4	Draw the architecture of TMS320C50 and explain its important blocks.	[L2][CO6]	[12M]
5	a)What are the different parts in central processing units of TMS320C50 and explain its need in brief?	[L2][CO6]	[4M]
	b) Explain the bus structure of TMS320C50 and explain its need?	[L2][CO6]	[4M]
8	c) Explain the function of CALU and PLU in TMS320C50 in detail.	[L2][CO6]	[4M]
6	a) Explain On-Chip memory of TMS320C50 in details.	[L2][CO6]	[6M]
	b) Explain On-Chip Peripherals of TMS320C50 in details.	[L2][CO6]	[6M]
7	Draw and Explain the architecture of TMS320C54X digital signal processor in brief.	[L2][CO6]	[12M]
8	a) Draw and explain Arithmetic and logical unit (ALU) of TMS320C54x.	[L2][CO6]	[6M]
	b) What are the different buses of TMS320C54x and their functions?	[L1][CO6]	[6M]
9	a) Explain internal memory organization in TMS320C54x architecture.	[L2][CO6]	[6M]
	b) Explain the concept of overflow handling in TMS320C54x architecture.	[L2][CO6]	[6M]
10	Explain different applications of PDSPs in detail.	[L2][CO6]	[12M]

Prepared by:

- 1. Ms. P. Chandanakala, AP/EC,E
- 2. Dr. P.G. Kuppusamy Prof./ECE
- 3. Dr. P.G.Gopinath, Prof./ECE